Impact of nutrients on circadian rhythmicity.

نویسندگان

  • Johanneke E Oosterman
  • Andries Kalsbeek
  • Susanne E la Fleur
  • Denise D Belsham
چکیده

The suprachiasmatic nucleus (SCN) in the mammalian hypothalamus functions as an endogenous pacemaker that generates and maintains circadian rhythms throughout the body. Next to this central clock, peripheral oscillators exist in almost all mammalian tissues. Whereas the SCN is mainly entrained to the environment by light, peripheral clocks are entrained by various factors, of which feeding/fasting is the most important. Desynchronization between the central and peripheral clocks by, for instance, altered timing of food intake can lead to uncoupling of peripheral clocks from the central pacemaker and is, in humans, related to the development of metabolic disorders, including obesity and Type 2 diabetes. Diets high in fat or sugar have been shown to alter circadian clock function. This review discusses the recent findings concerning the influence of nutrients, in particular fatty acids and glucose, on behavioral and molecular circadian rhythms and will summarize critical studies describing putative mechanisms by which these nutrients are able to alter normal circadian rhythmicity, in the SCN, in non-SCN brain areas, as well as in peripheral organs. As the effects of fat and sugar on the clock could be through alterations in energy status, the role of specific nutrient sensors will be outlined, as well as the molecular studies linking these components to metabolism. Understanding the impact of specific macronutrients on the circadian clock will allow for guidance toward the composition and timing of meals optimal for physiological health, as well as putative therapeutic targets to regulate the molecular clock.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of Circadian Rhythmicity of Respiratory Determinants Related to Diurnal Activities of Children and Adolescents: A Case Study in the City of Isfahan

Background: Diurnal sequences of activities conducted at several locations visited by individuals have an impact on population exposure to air pollution. However, data on individual's movement with a fine time resolution is rare. Methods: In the current study, 399 children and adolescents (aged 11–18 years) from Isfahan city were asked to recall their 24-hour diary during winter and spring 2014...

متن کامل

Nitrate, a nonphotic signal for the circadian system.

Recent advances in circadian biology have brought insights into the molecular mechanisms involved in the generation of circadian rhythmicity. However, little is known about the relationship between these molecular oscillators and the organism's temporal adaptation to complex daily environmental changes. We have studied the effects of nutrients on the circadian system of a marine unicellular alg...

متن کامل

CLOCK Genes and Circadian Rhythmicity in Alzheimer Disease

Disturbed circadian rhythms with sleep problems and disrupted diurnal activity are often seen in patients suffering from Alzheimer disease (AD). Both endogenous CLOCK genes and external Zeitgeber are responsible for the maintenance of circadian rhythmicity in humans. Therefore, modifications of the internal CLOCK system and its interactions with exogenous factors might constitute the neurobiolo...

متن کامل

Circadian rhythms and fertility.

Circadian rhythms impact on a wide range of physiological systems and this impact extends to fertility, such that disruptions to timing systems can impact upon reproductive capacity. This is highlighted most obviously in mutant mouse models whereby deletion or mutation of single genes results not only in disrupted circadian rhythmicity, but also compromised male and female reproductive function...

متن کامل

Roles of Dopamine in Circadian Rhythmicity and Extreme Light Sensitivity of Circadian Entrainment

Light has profound behavioral effects on almost all animals, and nocturnal animals show sensitivity to extremely low light levels [1-4]. Crepuscular, i.e., dawn/dusk-active animals such as Drosophila melanogaster are thought to show far less sensitivity to light [5-8]. Here we report that Drosophila respond to extremely low levels of monochromatic blue light. Light levels three to four orders o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 308 5  شماره 

صفحات  -

تاریخ انتشار 2015